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SOLVING ALGEBRAICALLY EXPLICIT DAES

WITH THE MANPAK-MANIFOLD-ALGORITHMS!

BY

WERNER C. RHEINBOLDT?

ABSTRACT. Recently, the author introduced a package of algorithms, called MANPAK, for
effective computations on implicitly defined submanifolds of R". Here algebraically explicit
differential algebraic equations (DAEs) are considered; that is, DAEs in which either the
algebraic equations and/or the algebraic variables are explicitly specified. Existence proofs
for several types of such DAEs of index one, two, and three are given which directly suggest
computational approaches. This is used in the development of solution algorithms for these
DAEs, all of them intrinsically based on the MANPAK routines. Some numerical examples

for the methods are included.

1. Introduction.

In [Rh96] a package of algorithms. called MANPAK, for computations on implicitly
defined submanifolds of R" was presented. More specifically, we work with a sufficiently
smooth mapping F : R — R™, d = n~m > 0, which is a submersion on its zero
set M = F~'(0), whence M is a d-dimensional submanifold of R". MANPAK includes
algorithms for computing local parametrizations on such an implicitly defined manifold A
and its tangent-bundle TAf, as well as other useful quantities on A including sensitivity

measures and the second fundamental tensor.

In [Rh96) several applications of the MANPAK algorithms were mentioned. Here we
consider another such application, namely the solution of certain algebraically explicit
differential algebraic equations (DAEs): that is. of DAEs in which either the algebraic

equations and/or the algebraic variables are explicitly specified. Algorithms are described

1 The work was supported in part by ONR-grant N-00014-96-1-0233, and NSF-grant CCR-8203488

2Department of Mathematics and Statistics. University of Pittsburgh. Pittsburgh. PA 152060
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for solving six types of DAEs of index one to three, all of them are based intrinsically on the
MANPAL routines. These solvers have been implemented as a collection of FORTRAN-T7
subroutines. As with all the MANPAK methods, the solvers are intended for application
to small or medium-sized DAE problems, mainly because they involve many dense matrix

computations.

Section 2 presents existence theories for algebraically explicit DAEs in a form exhibiting
the algorithmic approach. Then, in Section 3, the computational algorithms for these types
of DAEs are developed. Finally, Section 4 gives some numerical results obtained with the

implementations.

2. Existence Results.

We begin with autonomous DAEs of the form
Fi(uv,w)=0
(N2)

Fz(“) = Os

under the following condition:

Assumption N2: Let k,,my > 0, ky,m2 20, be integers such that ky + ky = my +ma,
k, > m,, and let E, C Rk, E, C R*v be nonempty, open sets. Assume that (i)
Fy:E — R™ isC' on Ey = E, x R* x Ey,; (i) F; : E, — R™ is C? on E,, (iii)
rank DFy(u,t) = my on My = F;(0) = {u € Eu; Fa(u) = 0} whence M; is a Cc? -

submanifold of Rk« of dimension d = k, — my; (iv) the n x n matrix, n = ky + ku,

(D,F,(u,p,w) DwFl(u,p,w))

(2.1)
DF,(u) 0

is nonsingular on the set ¥ = {(u,p,w) € Ey; Fy(u,p,w) = 0,(u,p) € TM,} where TM>
is the tangent bundle of M.

We are interested in a solution

(2.2) u:J—E, v:J—Ew t€JT,
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of (N2) which is C' on an open interval J containing the origin and satisfies the initial

condition
(2.3) u(0) = uq, u'(0) = po, w(0) = wq.

For some existence results on such initial value problems we refer to {Rh91], [RaRh91]. and

[RaRh94a). Here a proof is given that exhibits directly a computational approach.

Under Assumption N2 the index of (N2) equals two if k,, > 0 and ma > 0. one if either
k, = 0 or my = 0, and zero if k, = 0 and m, = 0. This is reflected in the label (N2)
where “N” stands for “nonlinear” and “2" indicates the (generic) index. Ve shall assume

first that mq > 0.

Given (ug,po,wo) € It, let (V4, ) be a C? local parametrization of My near uo: that

is, V¢ C R is an open neighborhood of the origin. and the C!-mapping
(2.4) @ Ve RF . o(y) € My, Yy € Ve o(0) = ug

is a homeomorphism of V4 onto its image and an immersion on V4. Then (VIxR?, (».Dp))
is a C! local parametrization of TM; near (uo, po). In particular, we have po = Dp(0)zo

for some z, € RY.

With fixed y € V¢ consider the nonlinear system of equations
(2.5) H(y; z,w) = Fi(o(y), Do(y)z, w) =0,
in the unknown z,w, for which H(0: zo. wo) = 0. The Jacobian of H is
(2.6)  DH(y:z,w) = (DpFi(¢(y). D(y)z.w)De1(0)  DuFi(p(y). Do(y)z.w)).

and DH(0; zo, wo) is nonsingular. In fact, if (£1,62) € R? x R*v is a null-vector of the
matrix (2.6) then (D(y)é1,&2) is a null-vector of (2.1) whence De(y)é =0, & = 0.
and therefore also £, = 0 because of the injectivity of Dy(y). Thus. the implicit function
theorem applies to the system (2.5). This proves that. after shrinking V¢ if needed. there

exists an open neighborhood U € R?¢ x E, and a unique C!-mapping

(2.7) OV U CRYEx R, U(y) = (wr(y), va(y)) €U vy € VY
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such that, for any y € V9, the unique solution of (2.5) in / is given by (z.w) = ¥(y).

Consider the local initial value problem

(LN2) vy =wi(y), v(0)=0,

which, by standard ODE-theory, has a unique C*-solution y : J ~— V¢ on an open interval
J containing the origin. Then, by construction of ¢ and the definition of © we have

Fi(e(y(t)), De(y(£))a(y(1)), ¥a(u(t) =0, Fa(p(y(t))) =0, VteJ.

which shows that u(t) = o(y(t)), w(t) = ¥2(y(t)), is a C* solution of (N2). Evidently,
this solution satisfies the initial conditions (2.3). In other words, we proved that, for

(u0,po,wo) € K, there exists a local C? solution of the initial value problem.

Conversely, let (2.2) be a.ny &Ci'l-aolutién of (N2) on an open interval J containing the
origin. Then we have Fj(u(t),u'(t),w(t)) = 0 and F(u(t)) = 0 for all t € J. Hence
by differentiation with respect to t we see that DF;(u(t))u'(t) = 0 for all t € J and
therefore (u(t),u'(t),w(t)) € K for all ¢t € J. Thus, the above results apply at any point
of this solution. Since (N2) is autonomous, it suffices to work with the point (u0,po, wo) =
(4(0), u'(0),w(0)). Then, with a local parametrization (V4,¢) of Mz at ug € M, and
20 € RY such that Dy(0)z = po, the C* - mapping ¥ of (2.7) is well defined on V4. For
the local curve y : J — V94, y = ¢~ ou, we have u(t) = p(y(t)), ¥'(t) = D(y(t))y'(t), and
y(0) = 0 which shows that Fi(w(y(t)), De(y(t))y'(t),w(t)) =0, forall t € J. In view of
the uniqueness of the solution of the equation (2.3), this implies that ¥(y) = (y'(t), w(t))
and, hence, that the local curve is a solution of the initial value problem (LN2).

Altogether this proves the following result:

Theorem 2.1: Suppose that Assumption N2 holds for the DAE (N2). Then, for any point
(uo,po, wo) € K there exists a unique C*-solution (2.2) of (N2) on some open interval J.

to € J which satisfies the initial conditions (2.3).

As noted earlier, the index of (N2) reduces to one if either my = 0 or k,, = 0. Both

cases are covered by the theorem. But, for m, = 0 the manifold Mj; equals the open set E,
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and the proof of Theorem 2.1 no longer suggests a very efficient computational approach.

Accordingly, we give here a separate proof for this special case.

For ma = 0, we write (N2) in the form
W' =p

(N1)
F(u,p,w) =0

where, in analogy to Assmption (N2), we now use the condition:

Assumption N1: Let ky,ky > 0, m = ky + ku, be integers and E, C R, E, C Rk«
nonempty, open sets. Assume that (i) F : Ey — R™ is C?onE=E, xE, x Ey, (i)
the m x m matrix ( DpF(u,p,w) DwF(u,p,w)) is nonsingular for any (u,pyw) € M =
F=1(0), whence M is a submanifold of R", n = 2 * k, + ky, of dimension d=k,.

Let (V¢, ) be a C!-local parametrization of M near some point (uo, po. wo) € M, where
we use for ¢ the component-notation
@ : V4 = R* = RFv x RFv x RFv
(2.8)
{ o(y) = (21(v), 02(¥)yp3(y)) € M, Vy € V¥, ©(0) = (uo, po. wo),
For given y € V4 the d xd matrix D) (y) is nonsingular. In fact, suppose that Dy (y)é=0
for some £ € R%. Then
D‘Pz(y)f)
Dea(y)é
and, by condition (ii) of Assumption N1, the matrix on the right side is nonsingular whence
Da(y)€ = 0, and De3(y)¢ = 0. Thus altogether we have Dp(y)§ =0 which requires that
E=0.

0 = DF(¢(y))De(y)é = (DpF(e(y)) DuwF(e(y))) (

Consider now the local initial value problem

(LN1) Dei(y)y' = ¢2(y), y(0) =0,

which by ODE theory has a unique C'-solution y : J ~ V¢ on some open interval J

containing the origin. Then, by construction, we have

0 = F(o(y)) = Flor(y(t), Der(y(1)y' (1), 3(y(t))), VteT
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which shows that u(t) = o (y(2)), w(t) = @3(y(t)). define a C! solution of (N1). Moreover.
because of ¢(0) = (uo,Po, wa), the initial conditions (2.3) hold.

Conversely let (2.2) be any C!-solution of (N1) on an open interval J containing the
origin. Then, clearly, (u(t),u'(t),w(t)) € M for all t € J and the earlier considerations
apply at any point of this solution.. As before, it suffices to work only with the point
(uo,po,wo) = (u(0),u'(0), w(0)). Let (V4,0) be a C! local parametrization of M at this
point and consider the local curve y : J = V9, y = o' o u. Then u(t) = ¢(y(t)) and
u'(t) = @a(y(t)) imply that Do(y(t))y'(t) = wa(y(t)) for t € J and from ¢(0) = ug =
u(0) = (y(0)) it follows that y(0) = 0. Hence, y is a solution of the initial value problem
(LN1).

With this we obtained the following result:

Theorem 2.2: Suppose that Assumption N1 holds for the DAE (N1). Then for any point
(ug, Po, Wo, to) € M there exists a unique C"* -solution (2.8) of (N1) on some open interval
J, 0 € J, which satisfies the initial condition (2.7).

These results extend also to second order, algebraically explicit DAEs which, in general,
have index three. As illustration, we consider here only the special case of quasilinear
systems of the form

Ay, u' " + B(u,u")w = G(u,u')
(Q3)
F(u)=0

under the following condition:

Assumption Q3: Let k,,m; > 0, ky,mq > 0, be integers such that k, + ky = my +ma,
k, > ms, and E, C R*«, E, C R*v nonempty, open sets. Assume that (i) A : Ey —
L(R* ,R™), and B : E, — L(Rk«,R™), G : Ey — R™ are C! on E, = E. x R¥s; (ii)
F:E, — R™ isC? on E; = E,; (iii) rank DF(u) = my on M = F~'(0) whence M is
a C3-submanifold of R*« of dimension d = k, — my; (iv) the n x n matrix. n = ky + ky,

29) (-4(u,p) B(u’p)> |
DF(u) 0
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is nonsingular for any (u.p) € TM.

Given (ug,po) € TM let (V. o) be a C*-local parametrization of M, near up. and

(V¢ x R4, (¢, Dy)) the induced C? local parametrization of TAf near (uo.po). As before.

there is some zo € R? such that po = De(0)z0
We introduce the C!-mapping
G: V¢ xR —R™
(2.10) { _ 2 ” .
Gy, ) = G(o(y), Do(y)z) = A(w(y), De(y)z) D2 e(y)(z. =), Vy.2) € VO xRY,
and the C? mapping
I:V?xR?— L(R™)
(‘) 11) d d
T(y,2) = (Ale(y), Do(y)2)Do(y)  Blw(y), De(¥)2)), Y(y.3) € VI x RY.

Then, the same proof as for the matrix (2.6) shows that the matrix ['(y.z) is nonsingular
for any fixed (y, z) € V¢ x R? Let 74 and 7, denote the canonical projections of the space

R? x R¥v onto its first and second component, respectively. We consider the local initial

value problem
(LQ3) y' =z, 2 =ml(y,2)7'Gy.2) ¥(0) =0.2(0) = 2.

Since the right side is of class C', ODE theory guarantees that (LQ3) has a unique C!-

solution y : J — V9 on some open interval J containing the origin. Set

(2.12) u(t) = p(y(t), w(t) = 7Ty, 2) 7 Gly(t),2(t), WeJ

Then F(u(t)) =0 for t € 7, and. by differentiation we find that for all t € J
(2.13) u'(t) = De(y(t)=(t), u"(t) = De(y(1)='(t) + D*o(y())(=(t), 2(¢)).

The second equation of (LQ3) implies that

='(t)
( Alu(t).u'(1))Do(y(t)) Blu(t).v'(t))) (w)) B

Glu(t). u'(8))z(1) = Alu(t). u' (1)) D (y(t))(=(2). 2(t))

)
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which, together with (2.13), shows that (2.12) is a C'-solution of (Q3) for which
(2.14) u(ty) = uo, u'(to) = po.

Note that the second parts of equations (2.12) and (2.13) enforce initial values for w(0)

and u''(0) which therefore cannot be prescribed.

Conversely, let (2.2) be any C?-solution of (Q3) on an open interval J containing the
origin. Then F(u(t)) = 0 and DF(u(t))u'(t) = 0; that is, (u(t),u'(t)) € TM forallte J.
Thus, the previous consideration apply at any point of this solution and it suffices again to
work with the point (ug, po,wo) = (u(0),u'(0), w(0)) where py = D(0)zo for some zo € R4,
Then with a local parametrization (V?, ) of M at ug € M, the mappings (2.10) and (2.11)
are well-defined and the matrix ['(y, z) is nonsingular for any fixed (y,z) € V¢ x R?. For

the C? local curve y : J — V¢, y = o1 o u, it follows that

o(y(t)) = u(t), De(y(t))y'(t) = u'(t), D(y(t)y"(t) + D3e(y(t))(y'(2),y'(t)) = u"(t).

" and y(0) = 0 and y'(0) = zo. Moreover, by substituting these representations for u and its

derivatives into the first equation of (Q3) and using (2.10) and (2.11), we find that

v"(t)

F(v(t),y'(t))( t)) = G(y(t),y'(t)), VteJ,

w
whence y and z = ¥’ is a solution of (LQ3).

This proves the following result:
Theorem 2.3: Suppose that Assumption Q3 holds for the DAE (Q3). Then for any point

(ug,po) € Ey such that (ug,po) € TM there exist a unique C2-solution (2.2) of (Q3) on
some open interval J C E,. to € J which satisfies the initial condition (2.14)

o R
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3. Computational Algorithms.

All algorithms in this section (except one) are written for non-autonomous versions of
the DAEs in Section 2. Our existence results are easily extended to these non-autonomous
cases by adding, as usual, the equation t' = 0. The details should not be required but

some comments will be provided with the algorithms.

The existence proofs suggest that. in each case. we should solve the corresponding local
ODE to compute the solution of the (global) DAE. Thus the process always begins with
the construction of some local parametrization of the manifold constraining the problem.
followed by the application of a standard ODE solver to the resulting local svstem. When
the computed points appear to leave the domain of validity of the local coordinate system.
a new local parametrization is generated and the process is continued by applying the

ODE solver to the new local ODE.

For the algorithms discussed here, a new reverse-communication version of the explicit
Runge-Kutta method DOPRI5 of [HNW87] was chosen as the ODE solver. Other inte-
grators are readily applicable in this setting. For simplicity, the codes establish a new
local parametrization at each accepted point: that is, after each successful RIK-step. Once
all stages and the next approximate solution of the local ODE have been computed. the
RK-routine performs the standard error computation. If the RK-step is accepted then
from the computed results a new approximate solution of the DAE is determined and the
process is repeated with this new global point until the required termination time has been
reached. If the RK-step was rejected, then. as usual. the stepsize is reduced and. from
the previous approximate global solution. the step is repeated with the estimated smaller
stepsize. A stepsize reduction may also have to be enforced if, during an RK-step the local
parametrization evaluation fails to converge which indicates that the local vector, at that

stage, fails to belong to the domain of the local parametrization.

We note that there is no fundamental obstacle to retaining the local parametrization

for several successful RK-steps.

There should be no need to detail the overall framework of the codes involving the use
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of the ODE solver. Instead we focus on the principal aspect of the different algorithms.
namely the evaluation of the right side of the local DAEs. All these algorithms are called
in two distinct modes to distinguish whether or not the local parametrization has to be

established at the particular point.

In the case of (N2) the algorithm is applied to the DAE

Fi(u,v',w,t) =0,
(4.1) {

Fp(u,t)=0

where the equation t' = 0 is not explicitly stated. Note that now M; = F; '(0) is a
submanifold of R", (n = 2ky + ky + 1), of dimension d = k, + 1. Accordingly, for the local

parametrization (V¢, ) at any (uo,t0) € M; the component notation
(4.2) @: V4 R xR, @(y) = (p1(y),02(v)) € Eu x Ey, Yy € V4, (uo,t0) = #(0)

is introduced. The evaluation of the right side of the local ODE then requires the solution

of the nonlinear system

Fl(‘r"l(y)sD‘Pl(y)z’wﬁ??(y))) -0

4.3 H(y,z,w) =
(49 ) ( Dya(y)z -1

With the solution function ¥ of (2.7) we have here Dpa(y)¥1(y) = 1 for all y € V¢ which
implies that now the relation between the local and global solution is u(t) = @(y(t = to)),

w(t) = Ya(y(t — to)).

For the solution of (4.3) a standard chord-Newton method is applied with the Jacobian
of H as iteration matrix typically evaluated at the time of the establishment of the local

parametrization; that is, with a matrix of the form

((Dpr(u,p,w,t)Dv:(O) 0) Dwa(u,p,w,t))

44
*4 Dy,(0) 0

Then the algorithm for the evaluation of the right side of the local ODE has the form:

DY N2 Input: mode

If mode = ‘init’ then

10
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Input: Global point (u,p,w,t);
Evaluate DF(u,t);
With GNBAS compute the basis of the local parametrization ¢ at (u.t):
Set the local point y = (0,0) € R¥« x RY;
Set up and factor the iteration matrix (4.4) at the point (u,p,w.t):
Use DGPHI to evaluate Dp(y) = (De1(y), Dwa(y))
Set the start vector ({,w) with {( = D¢y (y) s
Set the parametrization time t. =t;
Else
Input: Local point y in the parametrization ¢ at time ¢, last vector ((¢, we);
With GPHI evaluate the global point (u,?) = ¢(y)
If GPHI fails to converge then force an RI-step reduction
Use DGPHI to evaluate Dy(y) = (Dei(y), Do2(y))
Set the start vector (¢, w) = ({¢, we,
End If;

Use the chord-Newton method with the current iteration matrix to solve
the nonlinear system H(0,(,w) = 0 of (2.5) for ¢, w;
If the method diverges Then error return

Set p = D1 (y)(C);
Output: y' := ({,1), (%, py1), ({eswe) == ({, w).

Since M is here a submanifold of R¥« x R}, where the one-dimensional space represents
the ¢ variable, the local parametrization is constructed by means of the algorithm GNBAS
of [Rh96] which preserves the ¢ variable. Correspondingly, for the computation of the
derivative Dip(0) of the local parametrization the algorithm DGPHI of [Rh96) is applied.
If, in the 'init’-mode, we were assured that (uc,pc, We,tc) € A then we would expect that
H(0,z,w.) =0for z = (Dp(0)T De(0)] " D(0) Tp. For the algorithm it was found to be
more advantageous to enforce the validity of the equation explicitly by applying the chord
Newton method to (4.4) starting with (¢, w) given by ( = Dp(0)T(p,1) and w = w,. This

usually converges in a step or two and is no more costly than the indicated direct evaluation
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of z. Moreover, no convergence indicates here that the point is too far away from I\ to
be corrected onto that manifold. The algorithm for the solution of initial value problems

for the nonautonomous version (4.1) of (N2) has been implemented as a subroutine suite

called DAEN2.

The process simplifies considerably in several special cases of (N2). In particular, in the
quasilinear case
A(u,t)u' + B(u,t)w = G(u,t)
(4.5)
Fy(u.t) =0,
the chord Newton iteration is no longer any needed. Moreover, only the initial condition

(uo,to) € M; has to given is and no initial vectors po and wq are needed. For each local
vector y € V¢ arising during the RK-step, we have to set up and solve the linear system
(46) (( Ale(¥))Der(y) 0) B(v(y))) ( z > - Glow))

Dy2(y) 0 w
to obtain z = ¥;(y) and w = ¥(y). All other parts of the algorithm remain the same.
The algorithm for solving initial value problems for the special case (4.5) of (N2) has been

implemented as a subroutine suite called DAEQ2.

In the special index-one case (N1) of (N2) our proof already indicated the considerable

simplifications in the algorithm. The algorithm is applied to
u' =p,
(4.7)
F(u,p,w,t) =0,

where, again, the equation t' = 0 is subsumed. In this case, M, is 2 d = k, + 1-dimensional
submanifold of R®, (n = 2k, + kw + 1), and, analogous to (4.2), we write the local

parametrization in the component form
(48) 0 : V¥ = R™, o(y) = (21(y), p2(¥) 03(y) 24 (y)) € R* xRF« xR¥v xRY, Wy € V7.

Then the local ODE becomes

{ Deor(y)y' = v2(y)
(4.9)

Deg(y)y' =1
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and the evaluation of its right side has the following form:

DYN1: Input: mode
If mode = ‘init’ then
Input: Global point (u,p,t);
Evaluate DF(u,p,t);
With GNBAS compute the basis of ¢ at (u,p,t);
Set the local point y = (0,0) € R¥ x RY;
Parametrization time t. = t;
Else
Input: Local point y in the parametrization  at time ¢,
With GPHI evaluate the global point (u,p,t) = (¢1(y), ¥2(¥), ¥3(y))
If GPHI fails to converge then force an RK-step reduction
End If;
With DGPHI evaluate Do(y) = (De1(y), Do2(y), Des(y));
Solve the linear system Dy, (y){ = @2(y) for ¢;
Output: y' :=((, 1), (u,p,t).

The algorithm for the solution of initial value problems for the nonautonomous version
(4.7) of (N1) has been implemented as subroutine suite called DAEN1.

In analogy to (Q2) we may admit also a specialization of (N1) to quasilinear form. Such

index-one systems, albeit in the autonomous form
{ A(u)u' = G(u)

(4.10)
F?(u) = 0’

have been considered earlier in [RaRh94c] in connection with the computation of impasse

points (see also [RaRh94b]). In this case the reduced system has the form

(4.11) Alp(y)De(y)y' = Gle(y))

and it is obvious how to change the above algorithm DYN1 for this case. The autonomous

form was retained here to allow for a direct integration of the solution algorithm with
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the methods of [RaRh94c]. In our setting the impasse points are those points where the
reduced ODE has a standard singularity, in the sense that A(y) = A(p(y))Dy(y) satisfies

dim ker /i(y) =1, Dfi(y)(:, z) € rge .j.(y), ¥z € ker /i(y).

The combined algorithm has been implemented in the form of a suite of subroutines called

DAESQ]1 where “S” stands for “singular” point.

In the case of (Q3) the algorithm is applied to the nonautonmous version

‘ Alu, ' )" + B(u,u', t)w = G(u, ', 1)
S (4.12)

F(u,t)=0

Here M, is a submanifold of R", n = 2k, + ky + 1, of dimension d =k, +1 and we use the
component notation (4.2) for the local parametrizations. The algorithm for the evaluation

of the right side of the local ODE now has the form:

1 DYQ3 Input: mode
If mode = ‘init’ then
Input: Global point (u,p,t);
Evaluate DF(u,t);
With GNBAS compute basis matrix U, of ¢ at (u,t); o
Set the local point y = (0,0); z = U, p.

CITg.

Set the parametrization time t. = ¢;
Else
Input: Local point y,z in the local parametrization ¢ at time t.
With GPHI evaluate the global point (u,t) = (¢1(y), ¥2(¥))
If GPHI fails to converge then force an RK-step reduction
. End If;
| Use DGPHI to evaluate the derivative Do(y) = (De1(y), Dw2(y));
Set p = Do1(y)z;
Evaluate ¢ = D?p(y)(z,2):
Evaluate G = G(u,p,t) — A(u,p,t)q:
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Evaluate I' = (A4(u,p,t)De(y)B(u,p.1));
Solve the linear system I'((, w)T =G for ¢ and w;
o

Output: y' := z; 2’ :=(, (u,p,w. ).

The algorithm for the solution of initial value problems for the nonautonomous version

(4.6) of (Q3) has been implemented as subroutine suite called DAEQS.

Evidently, the Euler-Lagrange equations

{ M(u,t)u” + Do F(u,t)Tw = G(u,u', t)
(4.13)

F(u,t) =0,

arising as models of multibody systems. are a special case of (4.12). In that case. the
condition (iv) of Assumption (Q3) is equivalent with the usual assumption that the mass
matrix M is definite on Ty M. In [RaRh95] a different algorithm for the numerical
solution of (4.13) was given which uses the second fundamental tensor of the manifold M3.
This algorithm has also been added to the present collection of DAE solvers under the
name DAEULS.

4. Computational Examples.

As described in the previous sections, the package of solvers for algebraically explicit

DAEs consists of the following suites of routines:

(1) DAENT1 for nonlinear, index-1 DAEs (4.1) of order one

(2) DAESQL1 for quasilinear, index-1 DAEs (4.10) of order one with singular points
(3) DAEN? for nonlinear, index-2 DAEs (4.2) of order one

(4) DAEQ2 for quasilinear, index-2 DAEs (4.5) of order one

(5) DAEQS3 for quasilinear, index-3 DAEs (4.12) of order two

(6) DAEULS for Euler-Lagrange equations (4.13).

FORTRAN 77 versions of the codes are available.

We give here some numerical examples.




i
i

The following index-two problem was given in [MT94}

1 a
uy + sin(arcos uy) — S tw +l= 0

1
(5.1) up +w =0

ug —logu; =0
For u(0) = (1,0), w(0) = 0, the exact solution is uj(t) = cost, u3 = logcost, w*(t) = tant.
In [MT94] the system was integrated from ¢ = 0.5 to t = 1.5 using accurate starting values
and, among others, a BDF-solver of order 2 with fixed stepsize 10~3 and a tolerance of
10~8 for the Newton iteration. The resulting global errors at ¢ = 1.5 were

|u® = u}] = 0.560(—9), |uz — u3] = 0.791(=8), |w — w*| = 0.112(-6).

When DAEN2 was applied to (5.1) with accurate starting values and a relative tolerance
RTOL = 1078, the terminal point at ¢ = 1.5 was reached in 38 RIX-steps (no rejections)
and the final absolute, global errors were

luy = ul| = 2.734(—10), |uy — uj| = 3.115(=9).Jw — w*| = 5.476(~8).
More illuminating are the relative, global errors
luy = ul/|u}| = 3.865(—9), luz — uz|/lu3| = 1.176(=9), |w — w*|/|w"| = 3.884(-9),
which show no deterioration in the error of the algebraic variable.

The second example is the trajectory-prescribed-path control problem of [B83] which
is discussed in detail in [BCP89)]. We refer to the latter reference for the equations of this
index two problem. It involves six differential variables, u;,... ,us, two algebraic variables
wy, wa, both of which occur nonlinearly. The system consists of six differential and two

algebraic equations. At t = 0 the initial conditions
u(0) = (0.0, 100000.0, 0.0,12000.0, —1.0, 7/4)

were imposed where u;, us, us, us are in radians and uz,u4 in feet. The remaining initial

values

w(0) = (0.046650383, —0.91122917(-3))
u'(0) = (0.40394369(—3), —209.42888, 0.40394369(—3), —34.978260.0.0.0.0)
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where computed by DAEN1 and are in agreement with those given in [BCP89]. With a
relative tolerance RTOL = 10~ the system was integrated to t = 300. The final point
was reached in 44 RI-steps, including 3 rejections. and, as Table 5.1 shows. agrees very

closely with the reference values cited in [BCP89].

DAEN?2 BCP89

uy | 0.0727991598693 | 0.0727991600
Uz 14200.8114923 14200.8114
uz | 0.0406923052169 | 0.0406923053
Uy 1433.29213943 1433.29213
us | -0.174532925199 | -0.174532925
ug 2.35619449019 2.35619449
w) 0.124888510970 0.124888511
w) 0.460375007767 0.460375012

Table 5.1

As an example for DAEQ2 we use the index-two DAE proposed in [AP91]

-t
uy +a(t = 2w =[a+ Juy + %—-—c‘

) —
(5.2) up—(a—lw= ::21141+u2—2e'

0=(2+t)u; + (2 —d)uy — (t* +t = 2)e".

For a = 50 and the initial conditions u(0) = (1,1), the exact solution is u;(t) = us(t) =
expt, w = (expt)/(t — 2). With a relative tolerance RTOL = 10~°, DAEQ?2 reached
t = 1.0 in 202 RK-steps (no rejections) and the maximum norm of the final. absolute
error, was 0.4(—9). When run with DAEN2, (5.2) happens to be one of the few problems
where it does make a difference what updating strategy is used for the iteration matrix
in the chord-Newton process. When the iteration matrix is retained throughout an entire
RIK-step, then DAEN? required 328 RK-steps (including 97 rejections) to reach t = 1.0. On
the other hand, as expected, the performance of DAEN2 was identical to that of DAEQ?

when the iteration matrix is updated for each chord-Newton iteration.
As a first example for DAEN1 we used the simple problem
(5.2) w+u?-1=0, 2uv'-w=0

17
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For the initial conditions u(0) = 0, u'(0) = 1. w(0) = 0it has the exact solution u(t) = sint.
w(t) = sin2t which represents a horizontal figure eight in the plane and hence is not a
submanifold of R2. Note that here the matrix (Dp,F(u,w) Dy F(u,w)) of Assumption
2.2 is nonsingular on M; except at the point (u,p,w) = (1,0,0) which turns out to be
a removable singularity of M;. In all runs, DAEN1 stepped over this point when it was

reached for ¢t = (2k + 1)7/2, k = 0,1,.... In fact, the absolute error, in the maximum
norm, remained about of the same order of magnitude as the chosen relative tolerance
RTOL = 10~%. On the other hand, DASSL (see [BCP89]) always terminated just before
t = r/2. A second example is the batch reactor model given in [BD86]

uy + kauawe =0

up + kyugug = k—ywy + kauswz =0

uy — kougwe — kyu ug + k-3wz =0

uy + kyuque — k—gwz =0

ug — kyugug + kywe =0

ug + kyugug + kauqug — koywy — k_gwy =0

ug —wy+wr+wyt+wi—a=0

wy = (Kauy)/(K2 +wy) =0

ws — (Kau3)/(Ks +w1) =0

w¢ = (Kyus)/(K1 + wy) =0,

where
ky = 21.893, k_; = 2.14(+9), k; = 32.318, k3 = 21.893,k_3 = 1.07(+9),
Ky = 7.65(-18), K = 4.03(—11), K3 = 5.32(-18),a = 0.0131
The initial conditions are
u(0) = (1.5776,8.32,0.0,0.0,0.0,a), w(0) = (0.79735161(—5),0.79735161(~5),0.0,0.0)

and the values of the derivatives were determined by the differential equations. For this

problem, DASSL did not start while DAEN1 reached ¢t = 1.0 [hr] with 229 RK-steps

18




(including 30 rejections). Problems of this type suggest the need for introducing also an

implicit RK-solver into these DAE-codes.

Examples for use of DAESQ1 were given in (RaRh94c] and for the application of
DAEUL3 we refer to [RaRh95] and the comparative study [RhS95]. DAEQ3 also runs
for these Euler-Lagrange examples. Instead, we consider here only the following example

for DAEQ3 which is not of Euler-Lagrange type

u;” +uyw = (1 +sint)e’

2
(5.2) up”" + uw = + sint
T+20)2 1+t
t Dpt T
0 : S uyud + Buyud — uge™

S+ (417 (1+1Y)
For the initial conditions u(0) = (1,1), v/(0) = (1,—-1) the problem has the solution
u} = expt, uj = 1/(1 +1t), w* = sint. But in this case the matrix (2.11) of Assumption
2.3 has the form

1 0 u)

0 1 u?

—ud +3ud  —3ujuj + Ouyuy —uge"? — e 0

and, on the exact solution, this matrix becomes singular at t* = 0.03756275. When started
at ¢ = 0.0, DAEQ3 produces a solution for which, near ¢!, the algebraic variable tends
to —oo while the other variables remain close to their exact values. As an illustration,
Table 5.2 shows both the solution obtained by the code at t = 0.037562749184 and the

corresponding exact solution.

DAEQ3 Exact Sol.

uy 1.0382771509 1.0382771461
up | 0.96379713463 0.96379713014
w -25014116.226 | 0.037553916550

Table 5.2

The same behavior is seen when the code is run backwards from t = 0.05 (with exact

starting values), except that now, as expected. w(t) tends to +oc. On the other hand.
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when run forward from ¢t = 0.05 the computed solution approximates the exact solution

with an absolute error of the same magnitude as the given tolerance.

Singularities of quasilinear, second order ODEs have been studied in [L95]. A discussion

of the relation between these results and the observed singularity for (5.3) cannot be given

here. It is noteworthy that the singularity is not apparent in the given DAE.
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